- What are tail inequalities?
- Markov's inequality: Pr[ X > x ] ≤ E[X} / x
- Independent random variables
- Chebyshev: If X is sum of pairwise-independent 0/1 variables: E[ (X–μ)^2 ] ≤ μ
- ...and therefore Pr[ (X–μ)^2 > z ] ≤ μ/z
- ...and therefore Pr[ X > (1+δ)μ ] < 1/δ^2μ for any δ>0
- Exponential moment: If X is sum of fully independent 0/1 variables: E[ α^X ] ≤ e^((α–1)μ) for all α>1
- ...and therefore Pr[ X>x } ≤ e^{x-μ) (μ/x)^x
- ...and therefore Pr[ X > (1+δ)μ ] < e^(-δ^2μ/3) for any δ>0
- Treaps are shallow with high probability
- Review of midterm 1 problem 3
…Read more
Less…
- Tags
-