Special Seminar - Raaz Dwivedi, "From HeartSteps to HeartBeats: Personalized Decision-Making"
From cs-speakerseries
From cs-speakerseries
Abstract:
Ever-increasing access to data and computational power allows us to make decisions that are personalized to users by taking their behaviors and contexts into account. These developments are especially useful in domains like mobile health and medicine. For effective personalized decision-making, we need to revisit two fundamental tasks: (1) estimation and inference from data when there is no model for a decision’s effect on a user and (2) simulations when there is a known model for a decision’s effect on a user. Here we must overcome the difficulties facing classical approaches, namely statistical biases due to adaptively collected data and computational bottlenecks caused by high-dimensional models.
This talk addresses both tasks. First, I provide a nearest-neighbor approach for unit-level statistical inference in sequential experiments. I also introduce a doubly robust variant of nearest neighbors that provides sharp error guarantees and helps measure a mobile app's effectiveness in promoting healthier lifestyle with limited data. For the second task, I introduce kernel thinning, a practical strategy that provides near-optimal distribution compression in near-linear time. This method yields significant computational savings when simulating models of cardiac functioning.
Bio:
Raaz Dwivedi is a FODSI postdoc fellow advised by Prof. Susan Murphy and Prof. Devavrat Shah in CS and Statistics, Harvard and EECS, MIT respectively. He earned his Ph. D. at EECS, UC Berkeley, advised by Prof. Martin Wainwright and Prof. Bin Yu; and his bachelors degree at EE, IIT Bombay, advised by Prof. Vivek Borkar. His research builds statistically and computationally efficient strategies for personalized decision-making with theory and methods spanning the areas of causal inference, reinforcement learning, random sampling, and high-dimensional statistics. He won the President of India Gold Medal at IIT Bombay, the Berkeley Fellowship, teaching awards at UC Berkeley and Harvard, and a best student paper award for his work on optimal compression.
The morning of Wednesday 8 January, we updated the look and feel of Kaltura videos by moving from Player 2 to Player 7. The new player has a cleaner look, some improvements to controls, and a new transcript viewer. Also thanks to the upgrade we can now allow owners and co-editors of videos with two feeds to download *both* recordings from the mediaspace website.
As of the upgrade and going forward all videos play on mediaspace in the new player. Also since the upgrade any video you embed in Canvas or elsewhere, with the built-in tools in Canvas or the embed code from mediaspace, will play with the new player. However, any videos embedded anywhere before the update will continue to play in Player 2.
To take advantage of the new player, and use a fully-supported player, we urge you to re-embed videos in Canvas or elsewhere, retracing the steps you took the first time.
For more information on updating your links to take advantage of the new player: https://answers.uillinois.edu/illinois/146970 For more information on viewing media with the new player: https://answers.uillinois.edu/illinois/146972